Math 206B Lecture 25 Notes

Daniel Raban

March 8, 2019

1 Inequalities in Algebraic Combinatorics

1.1 Largest number of tableau for a partition of n

Proposition 1.1. $(f^{\lambda})^2 \leq n!$

Proof. This is because $\sum_{|\lambda|=n} (f^{\lambda})^2 = n!$.

Here is a restatement of this fact:

Corollary 1.1. $|SYT(\lambda)|^2 \le n!$.

This seems much less obvious, and requires RSK to prove it directly.

Corollary 1.2. Denote $D(n) = \max_{|\lambda|=n} f^{\lambda}$. Then $D(n) \ge \sqrt{n!/p(n)}$, where p(n) is the number of partitions of n.

Here is a conjecture:

Theorem 1.1. The number of $|\lambda| = n$ such that $f^{\lambda} = D(n)$ is O(1).

This is open, even though it seems like it should be obvious. In fact, we don't know if it is $e^{O(\sqrt{n})}$. The following, however, is known.

Theorem 1.2 (V-K). $D(n) < \sqrt{n!} \alpha^{\sqrt{n}}$ for some $\alpha > 1$.

So we have this upper bound and the lower bound $\sqrt{n!}/\beta^{\sqrt{n}}$. Here is a conjecture that Professor Pak wants to prove:

Theorem 1.3. The following limit exists:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \log \left(\frac{D(n)}{\sqrt{n!}} \right).$$

In 1954, someone at Los Alamos, used extra computing power to compute character tables of S_n for $n \leq 15$. They became interested in D(n) and conjectured that $D)n \leq \sqrt{n!}/n$. This was proven false about 15 years later.

Theorem 1.4 (Bufetov). Let $H(n) = 1/p(n) \sum_{|\lambda|=n} f^{\lambda}$. Then the following limit exists:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \log \left(\frac{H(n)}{\sqrt{n!}} \right).$$

Theorem 1.5 (V-K). Let $f^{\lambda} = D(n)$. Then the shape of λ (scaled by \sqrt{n}) looks like a rotated version of the graph

$$\Phi(x) = \frac{2}{\pi} (x \arcsin(x/\sqrt{2}) + \sqrt{2-x}).$$

Corollary 1.3. The average longest increasing subsequence of a permutation is $2\sqrt{n}$.

1.2 Bounds for Littlewood-Richardson coefficients

Theorem 1.6 (PPY). $(c_{\mu,\nu}^{\lambda})^2 \leq {n \choose k}$.

The upper bound is actually somewhat tight: the idea is to show that

$$\sum_{|\lambda|=n} \sum_{|\mu|=k, |\nu|=n-k} (c_{\mu,\nu}^{\lambda})^2 = \sum_{\alpha \in \operatorname{conj}(H=S_k \times S_{n-k})} \frac{z_{\alpha}(S_n)}{z_{\alpha}(H)} \alpha \stackrel{\geq}{=} 1\binom{n}{k}.$$

Then

$$\max_{\lambda,\mu,\nu} c_{\mu,\nu}^{\lambda} \ge \frac{\sqrt{\binom{n}{k}}}{\sqrt{p(k)}p(n-k)p(n)}$$

Proof. The idea of the proof of the theorem is to show that $\binom{n}{k}f^{\mu}f^{\nu}$ is the dimension of $\operatorname{ind}_{S_k \times S_{n-k}}^{S_n} S^{\mu} \otimes S^{\nu}$ and decompose the representation into irreducible representations. Then

$$\sum_{|\mu|=k} \sum_{|\nu|=n-k} c_{\mu,\nu}^{\lambda} f^{\mu} f^{\nu} = f^{\lambda},$$

and

$$\sum_{|\lambda|=n} (c_{\mu,\nu}^{\lambda})^2 \leq \sum_{|\lambda|=n} c_{\mu,\nu}^{\lambda} \frac{f^{\lambda}}{f^{\mu} f^{\nu}} = \frac{1}{f^{\mu} f^{\nu}} f^{\mu} f^{\nu} \binom{n}{k} = \binom{n}{k}.$$

So $(c_{\mu,\nu}^{\lambda})^2 \leq {n \choose k}$.

Theorem 1.7 (PPY, 2018). There exist $\lambda, \mu \nu$ such that $c_{\mu,\nu}^{\lambda} = 2^n/e^{O(-\sqrt{n})}$.

1.3 Bounds on the number of skew tableau of size n

Let $f^{\lambda \mid \mu} = |\operatorname{SYT}(\lambda \mid \mu)|$. We know that this number is the determinant of a matrix we get from λ, μ . Can we understand this number better? Our previous considerations give us the following:

Proposition 1.2. Let $|\lambda| = n$ and $|\mu| = k$. Then

$$f^{\lambda \setminus \mu} \leq \sqrt{\binom{n}{k}} p(n-k)\sqrt{(n-k)!}$$

Proof. This follows from the previous inequalities applied to the identity:

$$f^{\lambda \setminus \mu} = \sum_{|\nu| = n-k} c^{\lambda}_{\mu,\nu} f^{\nu}.$$

What about lower bounds?

Theorem 1.8 (Naruse, MPP).

$$f^{\lambda \setminus \mu} = n! \sum_{D \in \mathcal{E}(\lambda \setminus \mu)} \prod_{(i,j) \notin D} \frac{1}{h_{i,j}},$$

where $\mathcal{E}(\lambda \setminus \mu)$ is the set of "excited diagrams" (start with chips in the removed shape μ , and move them to the right or down to get a configuration in $\lambda \setminus \mu$).

Example 1.1. Suppose $\lambda = (3,3)$ and $\mu = (2)$. Then we start with

*	*	

We get 3 excited diagrams:

If we take only the first term of the sum, we get the following lower bound:

Corollary 1.4.

$$f^{\lambda \setminus \mu} \ge n! \prod_{(i,j) \in \lambda \setminus \mu} \frac{1}{h_{i,j}}$$